

Moving Humans Out of the Loop

Achieving True Autonomy in Aerial Robotics

Presented by Ophir Kendler, CTO, AerialX Drone Solutions

Overview

- Current commercial UAV market
- RC vs. UAV
- The human factor in UAV operations
- Considerations for airspace integration
- Required layers of autonomy
- COTS components for affordable enhanced autonomy
- UAVs as aerial robots
- Functional improvements true autonomy
- Summary & Conclusions

Overview - Current Market

- Low cost, low quality systems prevail
- Poor airspace integration
- Room for operator error = risk of incidents
- Skilled operators required (insufficient automation)
- Operators use the cheapest systems available
- No quality control, no true engineering

Unmanned? ...RC vs. UAV

- Current state of the art commercial drones:
 - Remote–controlled
 - Some can perform automated flight, but
 - No sense & avoid capability
 - No true autonomy (decision-making, etc.)
 - Poor safety/reliability track-record
 - Often not truly "engineered" products
 - Difficult to integrate into airspace
- Note: terminology varies slightly, e.g. UAV, UAS, RPAS. (also commercial vs. hobby/RC)
- In fact, many of present day commercial UAVs are modified hobby RC models

Aerial Robotics

- What makes Unmanned Aircraft Systems into aerial robots?
 - Automation
 - Sensing capabilities
 - Interaction with environment (sense & avoid, swarm operations, automated navigation, target tracking and following, etc.)
 - Complex operations
 - Collaboration with other systems (e.g. ground, marine)

Human Factor in UAS Operation

- Cheap systems affordable to virtually anyone
- Safety procedures often inadequate
- Skilled operators often required
- Handling, operation, accidents, distractions...
- Too much to know... not streamlined
- Communication key to safe operation
 - See and avoid
 - Payload operation
- Systems often built by nontechnical personnel
- Getting the human operator out of the loop can minimize incidents borne of the human factor

GCS "cockpit" design/ergonomics, product maintainability, error-handling, safe launch & recovery,

Airspace Integration

- Operators are often not aviators
- Enhanced automation (and autonomy) is needed to eliminate operator error
- Higher reliability/robustness needed
- Additional failsafe modes needed

Need for Enhanced Automation

- Ground control stations that facilitate operation (beyond just flight data)
- Sense & avoid, traffic awareness and collision avoidance
- Interaction with ATC and air traffic
- Decisions-making (Autonomy!)

Support for Autonomy

- Multiple equipment types exist that can support autonomy. Some examples:
 - LiDAR (e.g. Flash LiDAR)
 - IR sensors
 - Ultrasonic sensors
 - EO Cameras (for use of machine vision)
 - Transponders
 - Radars (as small as 2kg)
- Flight controllers need little weight increase for added capability. Weight is the primary consideration!

Truly Autonomous UAS

- Pilot out of the loop: can monitor, approve launch or termination, take over
- Minimal mission-planning requirements
- System knows its surroundings and can interact with it
 - Implement a GIS database
 - Situational awareness, decision-making
 - Mission planning interface extremely simplified
- Examples?
 - · Still under development... e.g. AerialX HummingBird

Summary & Conclusions

- Current state of the art in commercial UAS is not truly autonomous but rather remotely piloted
- Automation and efforts toward autonomy make UAS count as aerial robots
- Enhanced automation is important for safe airspace integration!