Satellite Based Monitoring and Data Communication in support of UAV operations

ACAMP – Alberta Centre for Advanced MNT Products

Markus Jochum, 11th March 2014

Airbus Defence and Space: A unique international leader

SAR and Optic Satellites

- → TerraSAR-X
- → TanDEM-X
- ⇒ SPOT 6/7
- Pleiades

March 1th 2014 2

TerraSAR-X & TanDEM-X SAR (radar) satellites

- X-Band SAR Systems
- Spatial resolution: up to 0,25 meter
- Large area coverage up to 270 km swath
- Multi-polarization Image acquisition: single, dual, quad pol
- Flexible, short-term programming and nearreal-time data delivery capacity

Public private partnership (PPP)

- Astrium GmbH: satellite construction
- German Aerospace Centre (DLR): satellite operations, exclusive scientific data rights
- Infoterra GmbH: exclusive commercial data rights

Constellation with PAZ

- TerraSAR-X / TanDEM-X formation in constellation with the Spanish satellite PAZ
- Same orbit plane
- One product portfolio / specification

10 February 2014 3

Earth Observation Applications

UAV and Earth Observation

UAV / UAS Unmanned Aerial Vehicles / Systems

- Remotely piloted aircraft with autonomous capabilities (lor term objective: fully autonomous operations in nonsegregated airspace)
- Emerging technology for Safety & Security and Environmental Monitoring in LOS operations
- → Challenge: Operation / Communication beyond visual range, UAV often too small for big sensors (e.g. radar)

Satellite based Monitoring and Communication

- Large area Monitoring
- Near Real Time services for time critical applications
- Beyond-line-of-sight operations with small bandwidth possible today, Ka- Band in preparation
- → Challenge: Applications such as Change detection, land use change, surface movement, are sometimes only indicators.

Motivation for integrated surveillance concepts

Increasing Activities:

- Resource exploration, exploitation (oil, gas, minerals on-shore)
- Infrastructure expansion (in permafrost)

Stakeholder interests

- → Industry: OGM
- Government: sovereignty (governance of resources & residuals, environmental conditions, safety / security of commercial activities & local communities)

Vision: Integrated operational concept

- Addressing vast areas by complementing "traditional assets" (planes, ships) with remotely controlled sensor systems (Earth Observation Satellites, UAVs)
- → Taking benefit of high speed communications technologies (SatCom, ground-based), ground-based sensors, situational awareness centers

Satellite based Monitoring in Support of UAV Operations

Combining the strengths of both systems

- **⇒ Earth Observation** provides strategic and operational awareness for large areas
- → UAV provide detailed overview and quick access to hot spots

Example

- 1. Wide area surveillance with satellites
- 2.Identification of hot spots
- 3. Close-up monitoring with UAV

Satellite based Communication in Support of UAV Operations

Data User: ESA and 3rd parties

EDRS

SpaceDataHighway

- System of geostationary satellites (EDRS-A: 9°East; EDRS-C: 31 East) enables high-speed bi-directional data relay between LEO satellites / UAVs and ground
- Downlink 1,8 Gbps
- Forward tasking 1 Mbps for UAS operation in joystick mode
- Increase surveillance range of UAVs
- Ambition: EDRS Satellite provides coverage for North America in the future

Satellite Based Communication in Support for UAV operation

- Standard terminals for small UAVs require small bandwidths (methane sniffer) are available
- Overcome the challenge to operate beyond line of sight: Ka-Band/Laser: Larger UAVs requiring higher bandwidths (hyperspectral, SAR) for future scenarios
- EDRS is a future possibility for Alberta
- Alternative (tbd). Polar Communication and Weather satellite

Current Bi-Lateral Cooperation

Command & Control Systems

 Project PASSAGES – Protection & Advanced Surveillance System for the Arctic: Green, Efficient Secure (Cassidian/Fraunhofer/Univ. Dalhousie/exactEarth – grants: BMWi/NSERT)

Earth Observation

- C/X-Band Radar Application Development (Airbus/MDA co-funded by DLR/CSA)
 - Project TERAK: TerraSAR-X-RADARSAT-2-Konstellation
 - Project IMPACT: Infrastructure Monitoring of Permafrost Areas in Canada using TerraSAR-X and RADARSAT-2" (start in April 2014).
 - Analysis of X- versus C-band for surface movement monitoring in permafrost regions and infrastructure monitoring
 - Analysis of different spatial resolutions and incidence angles for infrastructure monitoring including contribution potential of TS-X's "Staring SpotLight" (ST) for infrastructure monitoring using InSAR and change detection methods
- Radar near-real time CONCEPT of Operations (Astrium/MDA stakeholders: CIS, DND)
- TerraSAR-X Next Generation: Master Ground Segment Co-Phase A/B1 (Astrium/MDA)

German Canadian Collaboration Agreements

- Science & technology (yearly S&T summits we are part of it)
- Space collaboration (DLR / CSA, DLR / CCMEO, Airbus DS / MDA, Airbus DS / ExactEarth, Hatfield, Effigis)
- Collaboration on environmentally sustainable use of resources / of the High North (Merkel / Harper meeting)

Teamed up with Canadian Companies

Development Outlook

- ➡ Integrated Surveillance Systems for Command & Control Centers Requirements analysis and establishment of concept of operations will lead to appropriate sensor systems (radar, sonar, camera,...),data fusion algorithms and software, enabling infrastructure network, large system integration.
- → Reliable, high throughput communications: Multi-frequency (e.g. UHF, L, X, Ku, Ka) LEO, MEO or HEO satellite
- In future supplementing maritime situational awareness: ships, oil slicks, search & rescue
- → Terrestrial infrastructure integrity: permafrost stress to buildings, pipelines, etc. & oil / gas extraction, in-line with environmental regulations
- → Joint technology development together with RTOs/SMEs in Alberta for Oil Sands, Fires, Public Event Security (joint analysis of requirements, technology development, concepts of operations, Alberta Ministry of Innovation and Advanced Education/ Research, University Alberta, Univ. Calgary)
- ➡ Engagement: Airbus DS with SatCom, Earth Observation and UAV experience aims for long term engagement for terrestrial integrated concepts

Application examples

Surface Movement Monitoring

Oil-/Gas Production in **Kuwait**

Burghan Oilfield - Surface Movements derived from 16 TerraSAR-X datasets between 01/2008 and 02/2011

Pipeline detection with TerraSAR-X

Staring SpotLight, 0,58m (in Azimut), Feb 2014

- The regular pattern of structural pipeline supports are visible and
- provide with very high resolution TerraSAR-X data sufficient point density for surface movement measurements

Sat View

10 March 2014

Site Monitoring Change Detection

Change Detection Nigeria

Onshore Sample Amplitude Change Detection

Temporary existing objects

Proprietary Information

Figure: TSX Intensity Image December 28th 2013

Figure: TSX Intensity Image January 8th 2014

Figure: TSX Color Composite Dec. 28th 2013 – Jan. 8th 2014

10 March 2014

Agriculture: Crop Monitoring (Customer BASF)

Demmin, MV (Germany) - Multitemporal Composite Red: 30.10. (HV), Green: 28.10. (VV), Blue: 23.10. (VV)

- Mapping of acreage / detection of small fields
- Mapping of field heterogeneities
- Crop type recognition (cereals, corn, root crops, oil seeds)
- Growth stage assessment
- Crop parameter assessment

Early growing season identification of canola

Digital Elevation Model - WorldDEM™

WorldDEM[™] is the perfect foundation layer for Aviation security and Aircraft navigation

- Aircraft navigation (low-altitude flight, line-of-sight analysis)
- Landing approach planning
- Training and simulation operations (flight simulation)
- Accurate geo-referenced base for "Intelligence Dossier"
- 3D picture of terrain
- Planning and assessment of operations in the field: damage assessment

TerraSAR-X 2010-06-22 and 2010-07-04 QL

Fort McMurray

Markus Jochum

Future Programs, Geo-Intelligence
Airbus Defence and Space/Infoterra GmbH
T +49 7545 8 2086
M +49 160 96991597
E markus.jochum@astrium.eads.net

Rolf E. Nordmann

International Research & Technology Airbus Defence & Space T: +49 (0) 731 392 4706 M:+49 (0)170 537 8487

E: Rolf.nordmann@cassidian.com